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This report experimentally observes the magnetic field due to two parallel conducting coils, considering only
the field at their centre. It is found that the field is uniform within 1 part in 1000 when the coils are separated by
the same value as their radii, and that their radii must be the same for true uniformity. In this case, a Helmholtz
coil is created. One application of this is in order to cancel out external magnetic fields, like the Earth’s.

1. INTRODUCTION

Two conducting coils can be set up in a way as to generate
a magnetic field inside the region of the coils. If this is done
such that the magnetic field is uniform inside the region, the
coils are together called a Helmholtz coil. This can be used
for many applications, such as nullifying Earth’s magnetic
field when measurements of photo-electrons are made using
magnetic fields of known strength [1].

A current through a wire induces a magnetic field ~B at a
point in a direction r̂ from a current of magnitude I . This is
quantified by the Biot-Savart law,

~B =
µ0

4π

∫
Id~l × r̂
r2

, (1)

where d~l is the vector in the direction of the current, r is the
distance from the current to the point where the magnetic
field density is measured, and µ0 is the permeability of free
space, a constant used in magnetic field considerations [2].
In this case, the Biot-Savart law is used to derive a spe-
cific relation for the magnetic field density magnitude | ~B|
on the axis along the centre of two parallel current-carrying
loops, by integration. | ~B| is related to: the current through
both coils, I; the distance of both coils from their geomet-
ric centre, b; the radius of the first and second coil, a1 and
a2, respectively; and the distance of the measurement to the
centre of the system, x (taking the direction from the centre
to the second coil as positive). The exact relation is,

| ~B| = µ0Ia
2
1

2((x+ b)2 + a21)3/2
+

µ0Ia
2
2

2((x− b)2 + a22)3/2
. (2)

Here we use an experimental approach to find the ideal coil
separation, 2b, in terms of the coil radii, a1 and a2, in order
to generate the most uniform magnetic field possible.

2. METHODS

Two conducting wire coils were set up to be parallel within
the plane of their area on stands along a measuring track.
They were of a ‘single winding’, i.e. they were a single
wire. They were connected to a variable power supply in
series so that the current would be the same through both
coils, and this was set to around 10 A and measured. A
Hall probe was mounted on the track, and centred in the
geometric centre of the coil areas. It was able to move along
the axis of both coils, and a distance measurement could be
taken from the measuring track. A zero position was taken

where the end of the probe was in the centre of the first coil,
and so measurements were taken against this. A range of
distances of 2 radii either side of each coil was taken, with
separation of 5 mm.
The power supply was switched on only when measure-
ments were being taken, so that there was not a heating
effect in the connected wires, which would change the mag-
netic field of the system over time. Both coils were firmly
fixed in position while measurements were made, and it was
made sure that the Hall probe could only move along the
axis of the coils, and did not move vertically or horizontally.
The measurements of magnetic field density were taken by
‘freezing’ the Hall probe, which stopped the measurement
on a value, since it was fluctuating. The uncertainties and
calculations used for both distance and magnetic field den-
sity are detailed in the errors appendix.

3. RESULTS

Figure 1 shows the magnetic field density distribution along
the axis of two wire coils at optimal separation for a uni-
form magnetic field in the centre of the coils. A point at
x = 90 mm was tested against the fit and deemed to be an
outlier by Chauvenet’s criterion [3], and so was removed.
In the horizontal normalised residuals plot (right), the val-
ues for a magnetic field of higher than 200 µT (in red) were
omitted from the histogram due to the fact that the curve
flattens off so the points were many standard errors from
the curve in some points, which was not representative of
the true fit. The calculated coil separation was 40.8 mm and
the calculated coil radii from left to right were 41.4 mm and
40.1 mm.
Figure 2 shows the same setup but with varying coil spac-
ings, resulting in a non-uniform magnetic field in the cen-
tre of the two coils. The calculated separations were, from
smallest to largest, 29.4 mm, 39.2 mm, and 48.0 mm.
Figure 3 aims to show the change in magnetic field with
respect to distance along the central axis of the coils. Note
that the gradient curve is almost flat in the centre of the
figure (at x = 0), but not equal to 0.
In all figures, the parameters (the current through the coils,
the radii of the coils, and the coil separation) for the fitted
curve are found by χ2 minimisation [3].

4. DISCUSSION

In figure 1, the residual plots show that the experimental
data fits with the theoretical curve well, as both the vertical
and horizontal histograms fit a normal curve (plotted). The
vertical errors (bottom) fit less well, as points on the his-
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FIG. 1: The orange and green lines are the magnetic field
contributions from two wire coils. The blue line is their algebraic

sum. The yellow line shows the unfitted curve. Plotted are the
measured values of magnetic field density along a line through

the centre of both coils.

FIG. 2: A graph showing the magnetic field due to two wire
coils, spaced differing distances apart. Vertical lines show the
respective placements of the coils. Plotted are the measured
values, with residuals from the vertical error bars below and

histograms of these to the right.

FIG. 3: A plot showing the data from figure 1 with its gradient
plotted on the same axes.

togram can be seen well above the normal curve. This may
be because the uncertainty on the magnetic field (B field)
measurement was underestimated in some cases. This may
be the result of random variation and more B field measure-
ments should have been taken per point. It should not be
due to a systematic error in the probe since this would sim-
ply translate the plot up or down, resulting in a different
curve fit.
The fitted curve in figure 1 (blue) is lower intensity than the
unfitted curve (yellow). This results in an underestimation

of the current, and an overestimation of both coil radii, and
the coil separation. These fits of the radii, separation, and
current may not be representative of the true values due to a
systematic error in the B field measurement. This could be
that the Hall probe was not centralised or the coils were not
at the same level or in the same direction. All of these could
mean the vector of magnetic field density was not perpen-
dicular to the Hall probe sensor, so it measured a fraction of
the intensity of the magnetic field. It is also proposed that
there was a systematic error due to an external magnetic
field due to larger magnetic equipment in the same building
as the laboratory. However these may not be the case as the
unfitted curve intersects the measured values at large values
of x, so a systematic error is not visible here. The discrep-
ancy could be due to the calibration curve of the Hall probe
not being set correctly, so at larger values of magnetic field
density, it measured a worse value than the real value.
Figure 2 shows the variation of the curve shape with dif-
ferent spacings of the coils. Observe the difference in the
uniformity of the region within the coils. It is seen that the
most visibly uniform of the three curves is the orange curve,
where the separation of the coils is closest to the radius of
the coils.
Figure 3 shows the curve for a separation of one radius, and
the relative gradient of this curve. See that in the centre, the
gradient is nearly zero (around 0.25 µT mm−1). This means
that over a range of -20 to 20 mm the field changes by only
around 5 µT. For a field of 210 µT this is fairly negligible,
and the rate of change of magnetic field is only 0.1% of its
strength, showing that it is feasible to use conducting wire
coils to create a uniform magnetic field.

5. CONCLUSIONS

The distribution of magnetic field density was measured
inside and outside a pair of conducting coils in order to
determine the ideal separation in order to generate a uni-
form magnetic field inside the coils. It was found that
the ideal separation was equal to the average radius of the
coils, where the rate of change of magnetic field density was
0.1% of the magnetic field density within the coils. This
is the separation at which the apparatus could be called a
Helmholtz coil, as it produced the most uniform magnetic
field density distribution available. This shows that it would
be feasible to nullify the Earth’s magnetic field within a re-
gion using a Helmholtz coil at the correct orientation.
In this particular case the coils were of different radii so
the most uniform magnetic field inside the region was the
situation with the lowest rate of change of magnetic field
density.
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APPENDIX A: ERRORS APPENDIX

The standard errors on all measurements of distance were
taken to be half an analogue division of the measuring de-
vice used. Whenever distances were combined, such as
when the zero distance was taken from the measured dis-
tance, the errors were added in quadrature in accordance
with the equation,

αd =
√
α2
d1

+ α2
d2
, (A1)

where αd1 and αd2 are the uncertainties on the distance
measurements d1 and d2, respectively, and αd is the fi-
nal uncertainty on the final distance measurement d. [This
equation, like all of the equations included in Appendix A,
is based on the error analysis formula given in I. G. Hughes
and T. P. A. Hase, Measurements and Their Uncertainties,
Oxford University Press: Oxford (2010).]
The variation on the reading on the Gauss Meter was ac-
counted for by taking a number, N , of measurements and
calculating the mean and standard error of these measure-
ments. The mean is calculated using the equation,

B̄ =
1

N

N∑
i=1

Bi, (A2)

where B̄ is the mean measurement of B and Bi are individ-
ual measurements of the magnetic field density B.
The sample standard deviation, σsample, of the set of mea-
surements is worked out using the equation,

σsample =

√√√√ 1

N − 1

N∑
i=1

d2i , (A3)

where di = B̄−Bi. The uncertainty in the measurement of
B̄ is taken to be its standard error, αB , where

αB =
σsample√

N
. (A4)

In this case, six measurements were taken for every mea-
surement of position.
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